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PREFACE

It is impossible to escape the practical implications of compound inter-
est in our modern society. The consumer is faced with a bewildering
choice of bank accounts offering various rates of interest, and wishes
to choose the one which will give the best return on her savings. A
home-buyer is offered various mortgage plans by different companies,
and wishes to choose the one most advantageous to him. An investor
seeks to purchase a bond which pays coupons on a regular basis and
is redeemable at some future date; again, there are a wide variety of
choices available.

Comparing possibilities becomes even more difficult when the pay-
ments involved are dependent on the individual’s survival. For example,
an employee is offered a variety of different pension plans and must de-
cide which one to choose. Also, most people purchase life insurance at
some point in their lives, and a bewildering number of different plans
are offered.

The informed consumer must be able to make an intelligent choice in
situations like those described above. In addition, it is important that,
whenever possible, she be able to make the appropriate calculations
herself in such cases. For example, she should understand why a given
series of mortgage payments will, in fact, pay off a certain loan over a
certain period of time. She should also be able to decide which portion
of a given payment is paying off the balance of the loan, and which
portion is simply paying interest on the outstanding loan balance.

The first goal of this text is to give the reader enough information
so that he can make an intelligent choice between options in a finan-
cial situation, and can verify that bank balances, loan payments, bond
coupons, etc. are correct. Too few people in today’s society understand
how these calculations are carried out.

In addition, however, we are concerned that the student, besides
being able to carry out these calculations, understands why they work.
It is not enough to memorize a formula and learn how to apply it;
you should understand why the formula is correct. We also wish to
present the material in a proper mathematical setting, so the student
will see how the theory of interest is interrelated with other branches
of mathematics.

vi



Preface vii

Let me explain why the phrase “Problem-Solving Approach” ap-
pears in the title of this text. We will prove a very small number of
formulae and then concentrate our attention on showing how these for-
mulae can be applied to a wide variety of problems. Skill will be needed
to take the data presented in a particular problem and see how to rear-
range it so the formulae can be used. This approach differs from many
texts, where a large number of formulae are presented, and the student
tries to memorize which problems can be solved by direct application
of a particular formula. We wish to emphasize understanding, not rote
memorization.

A working knowledge of elementary calculus is essential for a thor-
ough understanding of all the material. However, a large portion of this
book can be read by those without such a background by omitting the
sections dependent on calculus. Other required background material
such as geometric sequences, probability and expectation, is reviewed
when it is required.

Each chapter in this text includes a large number of examples and
exercises. The most efficient way for a student to learn the material is
to work carefully through these exercises.

This text has appeared in three earlier editions, and before that a
study note version was used for several years in a one semester Theory
of Interest course at Memorial University of Newfoundland. I am deeply
indebted to Brenda Crewe, Wanda Heath and P.P. Narayanaswami for
help in preparing the original study notes.

Chuck Vinsonhaler was strongly supportive of the project and in-
troduced me to the people at ACTEX Publications. I am very grateful
to him for that.

Everyone at ACTEX was extremely helpful in the preparation of
previous editions. I would like to especially thank Marilyn Baleshiski
and Denise Rosencrant for their conscientious work in typesetting, and
Marlene Lundbeck for designing the cover. Most importantly I would
like to thank Dick London for his very helpful advice and assistance
and for doing the technical content editing in all previous editions.

It’s amazing to me how a set of study notes, originally prepared
almost 40 years ago for a Theory of Interest course at an isolated uni-
versity off the east coast of Canada, is now going into a fourth edition
as a textbook. For this new edition I’m delighted to welcome my co-
author Kevin Shirley, and to sincerely thank him for his willingness to
join this project. His expertise and enthusiasm are responsible for most
of the many changes from previous editions, and we hope that this new
revised and updated version will be helpful to students for many years
to come.

Michael M. Parmenter



PREFACE to the Fourth
Edition

In the twenty years since the third edition was published, significant
changes have occurred in actuarial education to reflect the day-to-day
work that actuaries are required to do. Many of these changes have
their origin in the introduction of more complex products, especially
those with embedded financial derivatives, the financial crises of 2007-
2008, and the resulting regulatory responses. Today, actuaries regularly
use more sophisticated software to model losses, perform simulations,
and make economic projections. These changes have resulted in an in-
creased reliance on technology and techniques that incorporate stochas-
tic analysis, including simulation. These developments motivate some
of the changes and additions made in the fourth edition. A discussion
of the major modifications to the text follow.

One thing that has changed significantly in the last twenty years is
that interest rates in all areas of financial life are much lower than they
were before. As a consequence, most of the interest rates in the first
few chapters of the text have been adjusted to better reflect current
values. Except for these interest rate adjustments, and the addition of
a number of new examples and exercises, Chapters 1 through 5 remain
essentially unchanged.

In Chapter 6, a discussion of probability distributions has been
added to the introduction to probability. Though the discussion is
mostly in the context summarizing discrete distributions as tables, it
lays the ground work for using random variables throughout the re-
mainder of the text. In Section 6.4, the analysis in the determination
of interest rates on loans has been expanded to include the language
and understanding conveyed in the most recent SOA study note on the
topic, Determinates of Interest Rates1. A discussion has been added
to provide insight on how the interest rates used to discount the ben-
efits in life insurances can be understood in relation to the insurance
company’s investments.

1Michael A. Bean (2017). Determinates of Interest Rates. Society of Actuaries.
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Preface ix

Chapter 7 preserves the material from the third edition, but pro-
vides an introduction to the future lifetime random variable, Section
7.5, and the curtate future lifetime random variable, Section 7.7. In
the third edition this material first appeared in Chapter 10. This ear-
lier introduction of random variables is not intended to make the text
more theoretical, but rather to allow the reader to make the connection
between the concepts and the underlying variables as the concepts are
introduced in Chapters 8 and 9. The chapter has also been broken
up into more sections to allow for easier access to specific topics. In
particular, the expectation of life, Section 7.8, has been fully revised.

The major change in Chapters 8 and 9 deals with computations.
Previously, commutation functions were emphasized as the primary
computation technique for calculating the values of net single premi-
ums represented by the life annuity and life insurance symbols. In
this edition, we preserve the commutation function method by moving
it to the Appendix for those still using it and as a reference for the
reader who may encounter it in the actuarial literature. However, in
its place we provide an introduction to building actuarial tables using
recursion formulas in a specified life table and using these tables to
calculate values needed for solving specific problems. Most of the ex-
amples and exercises from the third edition are preserved and updated
to use this technique. This calculation method is consistent with what
many life and annuity actuaries use in practice when calculating values
for net single premiums. Finally, a change in terminology from net
single premium to expected present value is made to be consistent with
the early introduction of random variables and the terminology as seen
in actuarial texts covering more advanced material.

Chapter 10 includes much of the material from the third edition,
but has been expanded to include sampling from the future lifetime
distribution and simulation. Simulation is increasingly used by actu-
aries as they are called upon to perform principles-based calculations.
In Chapter 11, a new section has been added, Section 11.4 Compu-
tational and Random Variable Considerations. This section extends
the new material on calculation techniques to multi-life functions, as
well as introduces the reader to the underlying future lifetime random
variables. Chapter 12 on pension applications is largely unchanged.

A new chapter on general insurance has been added. Chapter 13
introduces the reader to basic loss models and premium and reserve
determination in general insurance. Deductibles and policy limits are
introduced as is their effect on the expected loss. The chapter includes
sections on the positive payment model, Section 13.3, claim frequency
models, Section 13.4, aggregate claims, Section 13.5, and gross premi-
ums and reserves, Section 13.6. More than thirty exercises have been
added to accompany this new material.



x Theory of Interest and Life Contingencies

Most of the chapters include Extended Spreadsheet Exercises. These
exercises provide the reader with a more in-depth experience solving
problems in a spreadsheet environment. Microsoft EXCEL is used.
They allow the reader to see how examples and problems from the text
can be extended to a more realistic setting. These problems include
constructing actuarial tables to a given life table, simulating life insur-
ance benefits using the Gompertz model, extending examples beyond
their pencil-and-paper analysis, and building a retirements analysis in-
come worksheet.

Finally, I would like to thank Michael Parmenter who has included
me as a co-author in this project and all the people at ACTEX who
helped prepare this revision, especially Kim Neuffer who coordinated
the project and Yijia Liu for his work in preparing and typesetting
the document for publication. I would like to thank the reviewers and
proofreaders, Michael Bean, Daniel Geiger, John Dinius and Michael
Reilly. Without them there would be no fourth edition of what we hope
is a reasonably comprehensive yet friendly and readable textbook for
actuarial students.

Kevin L. Shirley



1

Interest: The Basic Theory

1.1 Accumulation Function
The simplest of all financial transactions is one in which an amount of
money is invested for a period of time. The amount of money initially
invested is called the principal and the amount it has grown to after
the time period is called the accumulated value at that time. This is a
situation which can easily be described by functional notation. If t is
the length of time for which the principal has been invested, then the
amount of money at that time will be denoted by A(t). This is called the
amount function. For the moment we will only consider values t ≥ 0,
and we will assume that t is measured in years. We remark that the
initial value A(0) is just the principal itself. In order to compare various
possible amount functions, it is convenient mathematically to define the
accumulation function from the amount function as a(t) = A(t)

A(0) . We
note that a(0) = 1 and that A(t) is just a constant multiple of a(t),
namely A(t) = k · a(t) where k = A(0) is the principal.

What functions are possible accumulation functions? In theory, any
function a(t) with a(0) = 1 could represent the way in which money
accumulates with the passage of time. Certainly, however, we would
hope that a(t) is increasing. Should a(t) be continuous? That depends
on the situation; if a(t) represents the amount owing on a loan t years
after it has been taken out, then a(t) may be continuous if interest
continues to accumulate for non-integer values of t. However, if a(t)
represents the amount of money in your bank account t years after the
initial deposit (assuming no deposits or withdrawals in the meantime),
then a(t) will stay constant for periods of time, but will take a jump
whenever interest is paid into the account. The graph of such an a(t)
will be a step function. We will normally assume in this text that a(t)
is continuous; it is easy to make allowances for other situations when
they turn up.

1



2 Chapter 1

In Figure 1.1 we have drawn graphs of three different types of ac-
cumulation functions which occur in practice:

(a) (b) (c)

Figure 1.1

Graph (a) represents the case where the amount of interest earned
is constant over each year. On the other hand, in cases like (b), the
amount of interest earned is increasing as the years go on. This makes
more sense in most situations, since we would hope that as the principal
gets larger, the interest earned also increases; in other words, we would
like to be in a situation where “interest earns interest.” There are many
different accumulation functions which look roughly like the graph in
(b), but the exponential curve represents compound interest and is the
one which will be of greatest interest to us.

We remarked earlier that a situation like (c) can arise whenever
interest is paid out at fixed periods of time, but no interest is paid
if money is withdrawn between these time periods. If the amount of
interest paid is constant per time period, then the “steps” will all be
of the same height. However, if the amount of interest increases as
the accumulated value increases, then we would expect the steps to
get larger and larger as time goes on. We have used the term interest
several times now, so perhaps it is time to define it!

Interest= Accumulated Value − Principal
This definition is not very helpful in practical situations, since we are
generally interested in comparing different financial situations to de-
termine which is most profitable. What we require is a standardized
measure for interest, and we do this by defining the effective rate of in-
terest i (per period) to be the interest earned on a principal of amount
1 over a period (often of one year). That is,

i = a(1) − a(0) = a(1) − 1. (1.1)
We can easily calculate i using the amount function A(t) instead of

a(t), if we recall that A(t) = k · a(t). Thus

i = a(1) − 1 = a(1) − a(0)
a(0)

= A(1) − A(0)
A(0)

. (1.2)
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Verbally, the effective rate of interest per period is the amount of
interest earned in one period divided by the principal at the beginning
of the period.

More generally, we define the effective rate of interest in the nth

period by

in = A(n) − A(n − 1)
A(n − 1)

= a(n) − a(n − 1)
a(n − 1)

(1.3)

Note that i1, calculated by (1.3), is the same as i defined by either (1.1)
or (1.2).

Example 1.1. Consider the function a(t) = t2 + t + 1.

(a) Verify that a(0) = 1.

(b) Show that a(t) is increasing for all t ≥ 0.

(c) Is a(t) continuous?

(d) Find the effective rate of interest i for a(t).

(e) Find in.

Solution. (a) a(0) = (0)2 + (0) + 1 = 1.

(b) Note that a′(t) = 2t + 1 > 0 for all t ≥ 0, so a(t) is increasing.

(c) The easiest way to solve this is to observe that the graph of a(t) is
a parabola, and hence a(t) is continuous (or recall from calculus
that all polynomial functions are continuous).

(d) i = a(1) − 1 = 3 − 1 = 2. Often this is expressed as 200%.

(e) in = a(n)−a(n−1)
a(n−1) = n2+n+1−[(n−1)2+(n−1)+1]

(n−1)2+(n−1)+1 = 2n
n2−n+1 .

1.2 Simple Interest
There are two special cases of the accumulation function a(t) that we
will examine closely. The first of these, simple interest, is used occasion-
ally, primarily between integer interest periods, but will be discussed
mainly for historical purposes and because it is easy to describe. The
second of these, compound interest, is by far the most important ac-
cumulation function and will be discussed in the next section. Keep in
mind that in both of these cases a(t) is continuous, and also that there
are some practical settings where modifications must be made.
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Simple interest is the case where the graph of a(t) is a straight line.
Since a(0) = 1, the equation must therefore be of the general form
a(t) = 1 + bt for some b. However, the effective rate of interest i is
given by i = a(1) − 1 = b, so the formula is

a(t) = 1 + it, t ≥ 0. (1.4)

Figure 1.2

Remarks

1. This is case (a) graphed in Figure 1.1 In this situation, the amount
of interest earned each year is constant. In other words, only the
original principal earns interest from year to year, and interest
accumulated in any given year does not earn interest in future
years.

2. The formula a(t) = 1 + it applies to the case where the principal
is A(0) = a(0) = 1. More generally, if the principal at time 0 is
equal to k, the amount at time t will be A(t) = k(1 + it).

3. We noted above that the “i” in a(t) = 1 + it is also the effective
rate of interest for this function. Note however that

in = 1 + in − [1 + i(n − 1)]
1 + i(n − 1)

= i

1 + i(n − 1)
. (1.5)

Observe that in is not constant. In fact, in decreases as n gets
larger, a fact which should not surprise us. If the monetary
amount of interest stays constant as the accumulated value in-
creases, then clearly the effective rate of interest is going down.

4. Clearly a(t) = 1 + it is a formula which works equally well for all
values of t, integral or otherwise. However, problems can develop
in practice, as illustrated by the following example.
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Example 1.2. Assume Jack borrows 1000 from the bank on January
1, 2021 at a rate of 5% simple interest per year. How much does he
owe on January 17, 2021?

Solution. The general formula for the amount owed at time t in gen-
eral is A(t) = 1000(1 + .05t), but the problem is to decide what value
of t should be substituted into this formula. An obvious approach is to
take the number of days which have passed since the loan was taken
out and divide by the number of days in the year, but should we count
the number of days as 16 or 17? Getting really picky, should we worry
about the time of day when the loan was taken out, or the time of day
when we wish to find the value of the loan? Obviously, any value of t
is only a convenient approximation; the important thing is to have a
consistent rule to be used in practice.
The commonest method is

t = number of days

365
. (1.6)

When counting the number of days it is usual to count the last day,
but not the first. In our case this would lead to t = 16

365 so Jack owes
1000

[
1 + (.05)( 16

365 )
]

= 1002.19.

1.3 Compound Interest
The most important special case of the accumulation function a(t) is
the case of compound interest. Intuitively speaking, this is the situation
where money earns interest at a fixed effective rate; in this setting, the
interest earned in one year earns interest itself in future years.

If i is the effective rate of interest, we know that a(1) = 1 + i, so 1
becomes 1 + i after the first year. What happens in the second year?
Consider the 1 + i as consisting of two parts, the initial principal 1 and
the interest i earned in the first year. The principal 1 will earn interest
in the second year and will accumulate to 1 + i. The interest i will also
earn interest in the second year and will grow to i(1 + i). Hence the
total amount after two years is 1+ i+ i(1+ i) = (1 + i)2. By continuing
this reasoning, we see that the formula for a(t) is

a(t) = (1 + i)t
, t ≥ 0. (1.7)
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Figure 1.3

Remark

1. This is an example of the type of function shown in part (b) of
the graph in Figure 1.1

2. The formula a(t) = (1 + i)t applies to the case where the principal
is A(0) = a(0) = 1. More generally, if the principal at time 0 is
equal to k, the amount at time t will be A(t) = k(1 + i)t.

3. Observe that the “i” in (1 + i)t is the effective rate of interest.
More generally,

in = (1 + i)n − (1 + i)n−1

(1 + i)n−1 = 1 + i − 1 = i. (1.8)

Hence, in this case in is the same for all positive integers n. We
shouldn’t be surprised, since this fits with our idea that, in com-
pound interest, the effective rate of interest is constant.

4. Mathematically, any value of t, whether integral or not, can be
substituted into a(t) = (1 + i)t. This is an easier task for us
today than it was many years ago; we just have to press the ap-
propriate buttons on our calculators! Again, there are problems
determining what value of t should be used, but we can deal with
them as we did in the last section.

In practical situations, however, a very different solution is some-
times used in the case of compound interest. To find the amount of
a loan (for example) when t is a fraction, first find the amounts for
the integral values of t immediately before and immediately after the
fractional value in question. Then use linear interpolation between the
two computed amounts to calculate the required answer.
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This is equivalent to saying that compound interest is used for inte-
gral values of t, and simple interest is used between integral values. In
Figure 1.4, the solid line represents a(t) = (1 + i)t, whereas the dotted
lines indicate the graph of a(t) if linear interpolation is used.

Figure 1.4

As we will see later, this common procedure benefits the lender in a
financial transaction, and (consequently) is detrimental to the borrower
if she has to repay the loan at a duration between integral values.

Example 1.3. Jack borrows 1000 at 5% compound interest.

(a) How much does he owe after 2 years?

(b) How much does he owe after 57 days, assuming compound interest
between integral durations?

(c) How much does he owe after 1 year and 57 days, under the same
assumption as in part (b)?

(d) How much does he owe after 1 year and 57 days, assuming linear
interpolation between integral durations?

(e) In how many years will his principal (i.e. debt) have accumulated
to 2000?

Solution. (a) 1000(1.05)2 = 1102.50.

(b) The most suitable value for t is 57
365 , and the accumulated value

is 1000(1.05)
57

365 = 1007.65.

(c) 1000(1.05)1 57
365 = 1058.03.
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(d) We must interpolate between A(1) = (1000)(1.05) = 1050.00 and
A(2) = 1000(1.05)2 = 1102.50. The difference between these
values is A(2) − A(1) = 52.50. The portion of this difference
which will accumulate in 57 days, assuming simple interest, is( 57

365
)

(52.50) = 8.20. Thus the accumulated value after 1 year
and 57 days is 1050.00 + 8.20 = 1058.20. Observe that the bor-
rower owes more money in this case than he does in part (c).

(e) We seek t such that 1000(1.05)t = 2000, or that (1.05)t = 2.
Using logs we obtain

t = log 2
log 1.05

= 14.2067 years.

Example 1.4. Irving and Yuri open up new bank accounts on January
1, 2015. Irving begins with 100 in his account and Yuri begins with
150 in his. Both accounts earn money at the same effective annual
rate of compound interest i. The amount of interest earned in Irving’s
account during the 21st year equals the amount of interest earned in
Yuri’s account during the 11th year. Find i.
Solution. The amount of interest earned by Irving in the 21st year is
100(1 + i)21 − 100(1 + i)20 = 100(1 + i)20

i.
The amount of interest earned by Yuri in the 11th year is
150(1 + i)11 − 150(1 + i)10 = 150(1 + i)10

i.
So we have 100(1 + i)20

i = 150(1 + i)10
i, giving (1 + i)10 = 1.5.

Therefore, i = 1.5 1
10 − 1 = .04138.

To close this section, we will compare simple interest and compound
interest to see which gives the better return. In Figure 1.5, graphs for
both simple interest and compound interest are drawn on the same set
of axes.

Figure 1.5
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We know that the exponential function (1 + i)t is always concave up
(because the second derivative is (1 + i)t[ln(1 + i)]2, which is greater
than zero), whereas 1 + it is a straight line. These facts tell us that the
only points of intersection of these graphs are the obvious ones, namely
(0,1) and (1, 1 + i). They also give us the two important relationships

(1 + i)t
< 1 + it, for 0 < t < 1, (1.9)

and

(1 + i)t
> 1 + it, for t > 1. (1.10)

Hence we conclude that compound interest yields a higher return
than simple interest if t > 1, whereas simple interest yields more if
0 < t < 1. The first of these statements does not surprise us, since
for t > 1, we have interest as well as principal earning interest in the
(1 + i)t case. The second statement reminds us that, for periods of less
than a year, simple interest is more beneficial to the lender or investor
than compound interest, a fact which was illustrated in Example 1.3.

1.4 Present Value and Discount
In Section 1.1 we defined accumulated value at time t as the amount
that the principal accumulates to over t years. We now define the
present value t years in the past as the amount of money that will
accumulate to the principal over t years. In other words, this is the
reverse procedure of that which we have been discussing up to now.

Figure 1.6

For example, 1 accumulates to 1 + i over a single year. How much
money is needed, at the present time, to accumulate to 1 over one year?
We will denote this amount by v, and, recalling that v accumulates to
v(1 + i), we have v(1 + i) = 1. Therefore

v = 1
1 + i

. (1.11)

These two accumulations are shown in Figure 1.7.
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Figure 1.7

From now on, unless explicitly stated otherwise, we will assume that
we are in a compound interest situation, where a(t) = (1 + i)t. In this
case, the present value of 1, t years in the past, will be vt = 1

(l+i)t . We
summarize this on the time diagram shown in Figure 1.8.

Figure 1.8

Observe that, since vt = (1 + i)−t = a(−t), the function a(t) =
(1 + i)t expresses all these values, for both positive and negative values
of t. Hence (1 + i)t gives the value of one unit (at time 0) at any time
t, past or future. The graph is shown in Figure 1.9.

Figure 1.9

Example 1.5. The Kelly family buys a new house for 93500 on May
1, 2025. How much was this house worth on May 1, 2021, if real estate
prices have risen at a compound rate of 4% per year during that period?
Solution. We seek the present value, at time t = −4, of 93500 at time
0. This is 93500( 1

1.04 )4 = 79924.19.
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What happens to the calculation of present values if simple interest
is assumed instead of compound interest? The accumulation function
is now a(t) = 1 + it. Hence, the present value of one unit t years in the
past is given by x, where x(1 + it) = 1. Thus the present value is

x = 1
1 + it

. (1.12)

The time diagram for this case is shown in Figure 1.10.

Figure 1.10

In Exercise 15, you are asked to sketch the graph of this situation.
Unlike the compound interest case, this graph changes dramatically as
it passes through the point (0,1).

We now turn our attention to the concept of discount. For the
moment we will not assume compound interest, since any accumulation
function will be satisfactory.

Imagine that 100 is invested, and that one year later it has accumu-
lated to 104.20. We have been viewing the 100 as the “starting figure”,
and have imagined that interest of 4.20 is added to it at the end of the
year. However, we could also view 104.20 as the basic figure, and imag-
ine that 4.20 is deducted from that value at the start of the year. From
the latter point of view, the 4.20 is considered an amount of discount.

Students sometimes get confused about the difference between in-
terest and discount, but the important thing to remember is that the
only difference is in the point of view, not in the underlying financial
transaction. In both situations we have 100 accumulating to 104.20,
and nothing can change that.

Since discount focuses on the total at the end of the year, it is
natural to define the effective rate of discount, d, as

d = a(1) − a(0)
a(1)

= a(1) − 1
a(1)

. (1.13)

In other words, standardization is achieved by dividing by a(1) in-
stead of a(0), as was done in (1.2) to define the effective rate of interest
i.
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More generally, the effective rate of discount in the nth year is given
by

dn = a(n) − a(n − 1)
a(n)

. (1.14)

(Compare this with the definition of in, given by (1.3).)
Now we will derive some basic identities relating d to i. One identity

follows immediately from the definition of d, namely,

d = a(1) − 1
a(1)

= (1 + i) − 1
1 + i

= i

1 + i
. (1.15)

Since 1 + i > 1, this tells us that d < i.
Immediately from the above we obtain

1 − d = 1 − i

1 + i
= 1

1 + i
= v. (1.16)

Actually, this identity is exactly what we would expect from the defi-
nition of d. The fact that 1 − d accumulates to 1 over one year is the
exact analogy of 1 accumulating to 1 + i over the same period.

Solving either of the above identities for i, we obtain

i = d

1 − d
. (1.17)

The reader will be asked to derive other identities in the exercises
and to give verbal arguments in support of them. We note that all
identities derived so far hold for any accumulation function. For the
rest of this section, it will be assumed that a(t) = (1 + i)t.

In Section 1.3 we learned that to find the accumulated value t years
in the future we multiply by (1 + i)t, whereas to find the present value
t years in the past we multiply by the discount factor 1

(1+i)t . However,
identity (1.17) tells us that 1 − d = 1

1+i . Hence, if d is involved, the
rules for present and accumulated value are reversed: present value is
obtained by multiplying by the discount factor (1 − d)t, and accumu-
lated value by multiplying by 1

(1−d)t .

Example 1.6. 1000 is to be accumulated by January 1, 2025, at a
compound rate of discount of 4.5% per year.

(a) Find the present value on January 1, 2022.

(b) Find the value of i corresponding to d.
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Solution. (a) 1000(1 − .045)3 = 870.98.

(b) i = d
1−d = .045

.955 = .0471.

Example 1.7. Jane deposits 1000 in a bank account on August 1,
2023. If the rate of compound interest is 3.9% per year, find the value
of this deposit on August 1, 2021.

Solution. Some students think that the answer to this question should
be 0, because the money has not been deposited yet! However, in a
mathematical sense, we know that money has value at all times, past
or future, so the correct answer is 1000( 1

1.039 )2 = 926.34.

1.5 Nominal Rate of Interest
We will assume a(t) = (1 + i)t throughout this section and, unless
stated otherwise, in all remaining sections of the book.

Example 1.8. A man borrows 1000 at an effective rate of interest of
0.5% per month. How much does he owe after 3 years?

Solution. What we want is the amount of the debt after three years.
Since the effective interest rate is given per month, three years is 36
interest periods. Thus the answer is 1000(1.005)36 = 1196.68.

The point of the above example is to illustrate that effective rates
of interest need not be given per year, but can be defined with respect
to any period of time. To apply the formulae developed to this point,
we must be sure that t is the number of effective interest periods in any
particular problem.

In many real-life situations, the effective interest period is not a
year, but rather some shorter period. Perhaps the lender tries to keep
this fact hidden, as it might be to his benefit to do so! For example,
suppose you want to take out a mortgage on a house and you discover
a rate of 4% per year. When you dig a little, however, what you find
out is that this rate is “convertible semiannually”, which means that
it is really 2% effective per half-year. Is that the same thing? Not at
all. Consider what happens to an investment of 1. After half a year
it has accumulated to 1.02. After one year (two interest periods) it
has become (1.02)2 = 1.0404. So, over a one-year period, the amount
of interest gained is .0404, which means the effective rate of interest
per year is actually 4.04%. Although it may not be clear from the
advertising, many mortgage loans are convertible semiannually, so the
effective rate of interest is higher than the rate quoted.
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As another example, consider a well-known credit card which charges
5.4% per year convertible monthly. This means that the actual rate
of interest is .054

12 = .0045 effective per month. Over the course of a
year, 1 will accumulate to (1.0045)12 = 1.0554, so the effective rate of
interest per year is actually 5.54%.

The 5.4% in the last example is called a nominal rate of interest,
which means that it is convertible over a period other than one year.
In general, we use the notation i(m) to denote a nominal rate of interest
convertible m times per year, which implies an effective rate of interest
of i(m)

m per mth of a year. If i is the effective rate of interest per year,
it follows that

1 + i =
[
1 + i(m)

m

]m

. (1.18)

Example 1.9. Find the accumulated value of 1000 after three years
at a nominal rate of interest of 6% per year convertible monthly.

Solution. This is really 0.5% effective per month, so the answer is the
same as Example 1.8, namely 1000(1.005)36 = 1196.68.

Remark
An alternative method of solving Example 1.9 is to find i, the effec-

tive rate of interest per year, and then proceed as in Section 1.3. We
would have i = (1 + i(m)

m )
m

− 1 = (1 + .005)12 − 1 = .06168, and the
answer would be 1000(1.06168)3 = 1196.69.

Notice the difference of .01 in the two answers. This is because not
enough decimal places were kept in the value of i, and some error crept
in. Of course, if you use the memory in your calculator it is unlikely
that this type of error will occur. Nevertheless, the first solution is still
preferable; time spent on unnecessary calculations can be significant in
examination situations.

It will be extremely important in later sections of the text to be
able to convert from one nominal rate of interest to another whose
convertible frequency is different. Here is an example of this.

Example 1.10. If i(6) = .048, find the equivalent nominal rate of
interest convertible semiannually.

Solution. We have (1 + i(2)

2 )
2

= (1 + .048
6 )6, so i(2) = 2[(1.008)3 −1] =

.04839.
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In the same way that we defined a nominal rate of interest, we could
also define a nominal rate of discount, d(m), as meaning an effective rate
of discount of d(m)

m per mth of a year. Analogous to identity (1.18), it
is easy to see that

1 − d =
[
1 − d(m)

m

]m

. (1.19)

Since 1 − d = 1
1+i , we conclude that[

1 + i(m)

m

]m

= 1 + i = (1 − d)−1 =
[
1 − d(n)

n

]−n

(1.20)

for all positive integers m and n.

Example 1.11. Find the nominal rate of discount convertible semi-
annually which is equivalent to a nominal rate of interest of 4.2% per
year convertible monthly.

Solution.
[
1 − d(2)

2

]−2
=
[
1 + i(12)

12

]12
, so

1 − d(2)

2
= (1.0035)−6 = .979255,

from which we find d(2) = 2(1 − .979255) = .04149.

1.6 Force of Interest
We note before starting this section that it is somewhat theoretical,
and is independent of the rest of the text. Anyone wishing to proceed
directly to more practical problems can safely omit this material. In
particular, more background knowledge is required for a full under-
standing here than is required for any other section; students with only
a sketchy knowledge of calculus might omit this on first reading.

Assume that the effective annual rate of interest is i = .04, and
that we want to find nominal rates i(m) equivalent to i. The formula
i(m) = m

[
(1 + i)1/m − 1

]
, which comes from identity (1.18), is used to

calculate these values which are shown in Table 1.1.

m 1 2 5 10 50

i(m) .04 .03961 .03937 .03930 .03924

Table 1.1
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We observe that i(m) decreases as m gets larger, a fact which we will
be able to prove later in this section. We also observe that the values
of i(m) are decreasing very slowly as we go further and further along;
in the language of calculus, i(m) seems to be approaching a limit. This
is, in fact, what is happening, and we can use L’Hopital’s rule to see
what the limit is. There is no need to assume i = .04 in our derivation,
so we proceed with arbitrary i.

lim
m→∞

i(m) = lim
m→∞

m[(1 + i)
1
m − 1] = lim

m→∞

(1 + i)
1
m − 1

1
m

. (1.21)

Since (1.21) is of the form 0
0 , we take derivatives top and bottom,

cancel, and obtain

lim
m→∞

i(m) = lim
m→∞

[(1 + i)1/m · ln(1 + i)] = ln(1 + i) (1.22)

since lim
m→∞

(1 + i)1/m = 1. This limit is called the force of interest and
is denoted by δ, so we have

δ = ln(1 + i). (1.23)

In our example, δ = ln(1.04) = .03922. The reader should compare
this with the entries in Table 1.1.

Intuitively, δ represents a nominal rate of interest which is convert-
ible continuously, a notion of more theoretical than practical impor-
tance. However, δ can be a very good approximation for i(m) when m
is large (for example, a nominal rate convertible daily), and has the
advantage of being very easy to calculate.

We note that identity (1.23) can be rewritten as

eδ = 1 + i. (1.24)

The usefulness of this form is shown in the next example. Again we
stress the importance of being able to convert a rate of interest with a
given conversion frequency to an equivalent rate with a different con-
version frequency.

Example 1.12. A loan of 3000 is taken out on June 23, 2017. If the
force of interest is 4%, find each of the following:

(a) The value of the loan on June 23, 2022.

(b) The value of i.

(c) The value of i(12).
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Solution. (a) The value 5 years later is 3000(1 + i)5. Using eδ =
1 + i, we obtain 3000(e.04)5 = 3000e.2 = 3664.21.

(b) i = e.04 − 1 = .04081.

(c) (1 + i(12)

12 )
12

= 1 + i = e.04,
so we have the result i(12) = 12(e.04/12 − 1) = .04007.

Remark
Note that if we tried to solve part (a) by first obtaining i = .04081

(as in part (b)), and then calculating 3000(1.04081)5, we would get
3664.19, an answer differing from our first answer by .02. There is noth-
ing wrong with this second method, except that not enough decimal
places were carried in the value of i to guarantee an accurate answer.
Let us repeat an earlier admonition: it is always wise to do as few cal-
culations as necessary. Observe that d

dt [(1 + i)t] = (1 + i)t · ln(1 + i).
Hence we see that

δ = ln(1 + i) =
d
dt [(1 + i)t]

(1 + i)t =
d
dt [a(t)]

a(t)
. (1.25)

Let us see why this fact happens to be true. Recall from the defi-
nition of the derivative that d

dt [a(t)] = lim
h→0

a(t+h)−a(t)
h , so

d
dt [a(t)]

a(t)
= lim

h→0

a(t + h) − a(t)
h · a(t)

= lim
h→0

a(t+h)−a(t)
a(t)

h
. (1.26)

The term a(t+h)−a(t)
a(t) in (1.26) is just the effective rate of interest over a

very small time period h, so
a(t+h)−a(t)

a(t)
h is the nominal annual rate corre-

sponding to that effective rate, which agrees with our earlier definition
of δ.

The above analysis does more than that, however. It also indicates
how the force of interest should be defined for arbitrary accumulation
functions.

First, let us observe that δ = ln(1+ i) is independent of t. However,
this is a special property of compound interest, corresponding to a
constant in. For arbitrary accumulation functions, we define the force
of interest at time t, δt, by

δt =
d
dt [a(t)]

a(t)
. (1.27)

since we would normally expect δt to depend on t.
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For certain functions, it is more convenient to use the equivalent
definition

δt = d

dt
[ln(a(t))]. (1.28)

We also remark that, since A(t) = k · a(t), it follows that

δt =
d
dt [A(t)]

A(t)
= d

dt
[ln(A(t))]. (1.29)

Example 1.13. Find δt in the case of simple interest.

Solution.

δt = D(1 + it)
1 + it

= i

1 + it
.

We now have a method for finding the force of interest, δt, given
any accumulation function a(t). What if we are given δt instead, and
wish to derive a(t) from it?

To start with, let us write our definition of δt from (1.29) using a
different variable, namely δr = d

dr [ln(a(r))]. Integrating both sides of
this equation from 0 to t, we obtain∫ t

0
δrdr =

∫ t

0

d

dr
[ln(a(r))]dr

= ln(a(r))|t0
= ln(a(t)) − ln(a(0))
= ln(a(t)) (1.30)

since a(0) = 1 and ln 1 = 0. Then taking the antilog we have

a(t) = e

∫ t

0
δrdr. (1.31)

Example 1.14. Prove that if δ is a constant (i.e., independent of r),
then a(t) = (1 + i)t for some i.

Solution. If δr = c, the right hand side of (1.31) is e

∫ t

0
cdr = ect =

(ec)t. Hence the result is proved with i = ec − 1.
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Example 1.15. Chandra makes deposits of 100 at time 0 and X at
time 4. His account has a force of interest of δt = t2

400 . The amount of
interest earned from time 4 to time 7 is 2X. Find X.

Solution. The 100 deposit accumulates to 100e

∫ 4

0
t2

400 dt = 100e
64

1200 =
105.48 at time 4, and to 100e

∫ 7

0
t2

400 dt = 133.09 at time 7. Hence the
interest earned by the 100 from time 4 to time 7 is 133.09 − 105.48 =
27.61. The deposit of X accumulates to Xe

∫ 7

4
t2

400 dt = 1.2617504X at
time 7, so the interest earned is 0.2617504X.

Thus 2X = 0.2617504X + 27.61, and solving for X we obtain X =
15.88.

Example 1.16. Prove that ∫n
0 A(t)δtdt = A(n)−A(0) for any amount

function A(t).

Solution. The left hand side is
∫ n

0 A(t)δtdt =
∫ n

0 A(t)
[

d
dt [A(t)]

A(t)

]
dt =∫ n

0
d
dt [A (t)] dt = A(t)|n0 = A(n) − A(0) as required.

The identity in the above example has an interesting verbal inter-
pretation. The term δtdt represents the effective rate of interest at time
t for the infinitesimal “period of time” dt. Hence A(t)δtdt represents
the amount of interest earned in this period, and ∫n

0 A(t)δtdt represents
the total amount of interest earned over the entire period, a number
which is clearly equal to A(n) − A(0).

The next example introduces the notion of payments being made
continuously into an account. Finding the accumulated value of such
a set of continuous payments requires integration.

Example 1.17. George makes deposits into his account at a contin-
uous rate of 20k + tk where 0 ≤ t ≤ 8. The account has a force of
interest of δt = 1

t+20 . After 8 years George has 10000 in the account.
Find k.

Solution. At time r, 0 ≤ r ≤ 8, an infinitesimal deposit of (20k+rk)dr

is made, and this deposit accumulates to (20k +rk)dr e

∫ 8

r

1
t+20 dt by the

end of year 8. Note that

(20k + rk)(e
∫ 8

r

1
t+20 dt)dr = (20k + rk)eln 28−ln(r+20) dr

= k(20 + r)eln 28
r+20 dr

= k(20 + r)( 28
r + 20

) dr = 28kdr.

The accumulated value at t = 8 of all such deposits is
∫ 8

0 28kdr =
(28k)8 = 224k. So 224k = 10000, giving k = 44.643.
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We now return to the compound interest case where we have a(t) =
(1 + i)t. It is interesting to write some of the formulae already devel-
oped as power series expansions. For example δ = ln(1 + i) becomes

δ = i − i2

2
+ i3

3
− i4

4
+ · · · . (1.32)

Convergence is a concern here, but as long as |i| < 1, which is
usually the case, the above series does converge.

Another important formula was i = eδ − 1, which becomes

i = δ + δ2

2!
+ δ3

3!
+ · · · . (1.33)

Since all terms on the right hand side are positive, this allows us to
conclude immediately that i > δ. We note in passing that this series
converges for all δ.

Next let us expand the expression i = d
1−d = d(1 − d)−1, which

becomes

i = d(1 + d + d2 + d3 + · · · ) = d + d2 + d3 + · · · . (1.34)

Again this shows us very clearly that i > d. We also note that we must
have |d| < 1 for this series to converge. In fact, trying to put d = 2
yields an amusing result: the left hand side is i = 2

1−2 = −2, whereas
the right hand side becomes 2 + 22 + 23 + · · · , all of which are positive
terms. Thus we have “proven” that −2 is a positive number!

Next let us expand i(m) as a function of i. From (1.19) we have
i(m) = m[(1 + i)1/m − 1], so

i(m) = m

[
1 + 1

m
i +

1
m ( 1

m − 1)
2!

i2 +
( 1

m )( 1
m − 1)( 1

m − 2)
3!

i3 + · · · − 1
]

= i +
[ 1

m − 1
2!

]
i2 +

( 1
m − 1)( 1

m − 2)
3!

i3. (1.35)

Again, this converges for |i| < 1.
Why are we interested in power series expansions? Well, we have

already seen that they sometimes allow us to easily conclude facts like
i > δ (although they certainly are not needed for that). They also give
us a quick means of calculating some of these functions, since often
only the first few terms of the series are necessary for a high degree of
accuracy. If you ask your calculator to do this work for you instead,
it will oblige, but the program used for the calculation will often be a
variation of one of those described above.

As a final example, let us expand d(m) in terms of δ. We have[
1 − d(m)

m

]m

= (1 + i)−1 = eδ (1.36)
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so

d(m) = m[1 − e−δ/m]

= m

[
1 − (1 + (− δ

m
) +

(− δ
m )2

2!
+

(− δ
m )3

3!
+ · · · )

]

= m

[
δ

m
− δ2

2!m2 + δ3

3!m3 − · · ·
]

= δ − δ2

2!m
+ δ3

3!m2 − · · · .

From this we easily see that lim
m→∞

d(m) = δ. In other words, there is
no need to define a force of discount, because it will turn out to be the
same as the force of interest already defined.
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EXERCISES

1.1 Accumulation Function; 1.2 Simple Interest;
1.3 Compound Interest

1-1. Alphonse has 14,000 in an account on January 1, 2020.
(a) Assuming simple interest at 3% per year, find the accumu-

lated value on January 1, 2026.
(b) Assuming compound interest at 3% per year, find the ac-

cumulated value on January 1, 2026.
(c) Assuming simple interest at 3% per year, find the accumu-

lated value on March 8, 2020.
(d) Assuming compound interest at 3% per year, but linear

interpolation between integral durations, find the accumu-
lated value on February 17, 2022.

1-2. Mary has 14,000 in an account on January 1, 2020.
(a) Assuming compound interest at 3.8% per year, find the

accumulated value on January 1, 2025.
(b) Assuming simple interest at 3.8% per year, find the accu-

mulated value on April 7, 2025.
(c) Assuming compound interest at 3.8% per year, but linear

interpolation between integral durations, find the accumu-
lated value on April 7, 2025.

1-3. For the a(t) function given in Example 1.1, prove that in+1 < in

for all positive integers n.
1-4. Consider the function a(t) =

√
1 + (i2 + 2i)t2, i > 0, t ≥ 0.

(a) Show that a(0) = 1 and a(1) = 1 + i.
(b) Show that a(t) is increasing and continuous for t ≥ 0.
(c) Show that a(t) < 1 + it for 0 < t < 1, but a(t) > 1 + it for

t > 1.
(d) Show that a(t) < (1 + i)t if t is sufficiently large.

1-5. Let a(t) be a function such that a(0) = 1 and in is constant for
all n.
(a) Prove that a(t) = (1 + i)t for all integers t ≥ 0.
(b) Can you conclude that a(t) = (1 + i)t for all t ≥ 0?
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1-6. Let A(t) be an amount function. For every positive integer n,
define In = A(n) − A(n − 1).
(a) Explain verbally what In represents.
(b) Prove that A(n) − A(0) = I1 + I2 + · · · + In.
(c) Explain verbally the result in part (b).
(d) Is it true that a(n) − a(0) = i1 + i2 + · · · + in? Explain.

1-7. (a) In how many years will 1000 accumulate to 1400 at 4%
simple interest?

(b) At what rate of simple interest will 1000 accumulate to
1500 in 12 years?

(c) Repeat parts (a) and (b) assuming compound interest in-
stead of simple interest.

1-8. At a certain rate of simple interest, 1000 will accumulate to 1060
after a certain period of time. Find the accumulated value of
500 at a rate of simple interest 2

3 as great over twice as long a
period of time.

1-9. Find the accumulated value of 6000 invested for ten years, if the
compound interest rate is 3% per year for the first four years
and 4.2% per year for the last six.

1-10. Annual compound interest rates are 4.3% in 2016, 3.7% in 2017
and 5% in 2018. Find the effective rate of compound interest
per year which yields an equivalent return over the three-year
period.

1-11. At a certain rate of compound interest, it is found that 1 grows
to 2 in x years, 2 grows to 3 in y years, and 1 grows to 5 in z
years. Prove that 6 grows to 10 in z − x − y years.

1-12. If 1 grows to K in x periods at compound rate i per period and
1 grows to K in y periods at compound rate 2i per period, which
one of the following is always true? Prove your answer.
(a) x < 2y

(b) x = 2y

(c) x > 2y

(d) y =
√

x

(e) y > 2x
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1.4 Present Value and Discount

1-13. Henry has an investment of 1000 on January 1, 2023 at a com-
pound annual rate of discount d = .04.
(a) Find the value of his investment on January 1, 2020.
(b) Find the value of i corresponding to d.
(c) Using your answer to part (b), rework part (a) using i in-

stead of d. Do you get the same answer?

1-14. Mary has 14,000 in an account on January 1, 2020.
(a) Assuming compound interest at 4% per year, find the present

value on January 1, 2014.
(b) Assuming compound discount at 4% per year, find the

present value on January 1, 2014.
(c) Explain the relative magnitude of your answers to parts (a)

and (b).

1-15. (a) Sketch a graph of a(t) with its extension to present value
in the case of simple interest.

(b) Explain, both mathematically and verbally, why 1−it is not
the correct present value t years in the past, when simple
interest is assumed.

1-16. Prove that dn is constant in the case of compound interest.

1-17. Prove each of the following identities mathematically. For parts
(a), (b) and (c), give a verbal explanation of how you can see
that they are correct.
(a) d = iv

(b) d = 1 − v

(c) i − d = id

(d) 1
d − 1

i = 1

(e) d
(
1 + i

2
)

= i
(
1 − d

2
)

(f) i
√

1 − d = d
√

1 + i
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1-18. Four of the following five expressions have the same value (for
i > 0). Which one is the exception?
(a) d3

(1−d)2

(b) (i−d)2

1−v

(c) (i − d)d
(d) i3 − i3d

(e) i2d

1-19. The interest on L for one year is 210. The equivalent discount
on L for one year is 200. What is L?

1.5 Nominal Rate of Interest

1-20. Acme Trust offers three different savings accounts to an investor.
Account A compound interest at 4.1% per year convertible

quarterly.
Account B compound interest at 4.096% per year convertible

5 times per year.
Account C compound discount at 4.064% per year convertible

10 times per year.
Which account is most advantageous to the investor? Which
account is most advantageous to Acme Trust?

1-21. Phyllis takes out a loan of 3000 at a nominal rate of 5.4% per
year convertible 6 times a year. How much does she owe after
22 months?

1-22. The Bank of Newfoundland offers a 4.8% mortgage convertible
semiannually. Find each of the following:
(a) i

(b) d(4)

(c) i(12)

(d) The equivalent effective rate of interest per month.

1-23. 100 grows to 102.50 in 6 months. Find each of the following:
(a) The effective rate of interest per half-year.
(b) i(2)

(c) i

(d) d(3)
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1-24. Jack deposits 20 into a fund today and 30 twenty years later.
The fund earns interest at a nominal rate of d compounded
quarterly for the first 15 years, and at a nominal rate of 4%
compounded semiannually thereafter. The fund accumulates to
150 at the end of 40 years. Find d.

1-25. Daya deposits 500 into a savings account which pays interest at
a nominal rate of i compounded quarterly. At the same time
Pramila deposits 1000 into a different savings account which
pays simple interest at an annual rate of i. Both accounts earn
the same amount of interest during the first 3 months of the 12th

year. Find i.

1-26. Find n such that 1 + i(n)

n = 1+ i(6)
6

1+ i(8)
8

.

1-27. Express d(7) as a function of i(5).
1-28. Show that v

(
1 + i(3)

3

)
=
(

1 + i(30)

30

)(
1 − d(5)

5

)√
1 − d.

1-29. Prove that i(4)d(8) ≥ i(8)d(4).
1-30. (a) Prove that i(m) − d(m) = i(m)d(m)

m .
(b) Prove that 1

d(m) − 1
i(m) = 1

m .

1.6 Force of Interest

1-31. Find the equivalent value of δ in each of the following cases.
(a) i = .043
(b) d = .043
(c) i(4) = .043
(d) d(5) = .043

1-32. In Section 1.3, it was shown that for 0 < t < 1, (1 + i)t < 1 + it.
Show that 1 + it − (1 + i)t is maximized at t = 1

δ [ln i − ln δ].
1-33. Assume that the force of interest is doubled.

(a) Show that the effective annual interest rate is more than
doubled.

(b) Show that the effective annual discount rate is less than
doubled.

1-34. Show that lim
i→0

i−δ
δ2 = .50.

1-35. Find a(t) if δt = .04(1 + t)−1.
1-36. Obtain an expression for δt if A(t) = kat+1bt3

cdt .
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1-37. Janet makes payments on a loan at a continuous rate of tk +18k
where 0 ≤ t ≤ 20. The interest rate on the loan is a force of
interest given by δt = 1

t+18 . After 10 years, the accumulated
value of all of her payments is 5,000.
(a) Find k.
(b) Find the accumulated value of all of her payments after 20

years.

1-38. Using mathematical induction, prove that for all positive inte-
gers n, dn

dvn (vn−1δ) = −(1 + i)(n − 1)!.

1-39. Express v as a power series expansion in terms of δ.

1-40. Express d as a power series expansion in terms of i.

1-41. Prove that i(n) < i(m) if n > m.

1-42. Prove that d < d(n) < δ < i(n) < i for all n > 1.

1-43. Show that d
dt (δt) =

d2
dt2 A(t)

A(t) − (δt)2.

1-44. Show that δ = d+i
2 + d2−i2

4 + d3+i3

6 + · · · .

1-45. Which is larger, i − δ or δ − d? Prove your answer.
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Interest: Basic Applications

2.1 Equation of Value
In its simplest terms, every interest problem involves only four quan-
tities: the principal originally invested, the accumulated value at the
end of the period of investment, the period of investment, and the rate
of interest. Any one of these four quantities can be calculated if the
others are known.

In this section we will present a number of examples illustrating
the determination of principal, accumulated value, and period of in-
vestment; determining the rate of interest will be explored in Sections
2.2 and 2.3. More complicated situations involving several “principals”
invested at different times will arise in practice, and we will examine
some of these as well.

The most important tool in dealing with such problems is the time
diagram, which we encountered in chapter one, and the first step in any
solution should be to draw such a diagram. After that, all entries on
the diagram should be “brought” to the same point in time, in order
that they can be compared. Then an equation of value is set up at
that point in time, and a solution is obtained by algebraic means. The
student should carefully study the examples in this section to see how
these steps are carried out in practice.

We remark that before calculators came into general use, the calcu-
lations involved in some of these problems were quite difficult, and it
was necessary to develop a collection of techniques to deal with them.
Interest tables and log tables were in frequent use, and values which
did not appear in the interest tables were handled by interpolation or
other approximate methods. For example, the power series expansions
given in the previous chapter could be used for calculation, since the
first few terms often give a good approximation to the correct answer.

28
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Of course we will not need to employ the older techniques. That does
not mean that every question can be solved by pushing the appropriate
button, however; in particular we will see cases where some approxi-
mate method (e.g., linear interpolation) is required to obtain an answer.
In addition it is often necessary to first analyze the data very carefully,
and organize it in such a way such that the calculator can then be called
upon to assist in solving the problem. After all, your calculator is only
an aid to mechanical computation. The person with the problem still
has to solve it!

Example 2.1. Find the accumulated value of 500 after 173 months
at a rate of interest of 4% convertible quarterly, assuming compound
interest throughout.

Solution. The effective rate of interest is .01 per 3 month period, and
there are a total of 57 2

3 periods.
Hence the answer is 500(1.01)173/3 = 887.50.

Remarks

1. It is sometimes convenient to assume compound interest over in-
tegral durations, but simple interest between integral durations.
Under that assumption, the answer to this example would be
500(1.01)57 [1 + (.01)( 2

3 )
]

= 887.51. Observe that this answer
is larger than the one in the example, agreeing with our earlier
observation that simple interest gives a higher return when the
period is less than a year.

2. In pre-calculator days the calculation of 500(1.01)173/3 would re-
quire some work. Log tables, if available, could give the answer
quickly but if only interest tables were available, you might have
to write the product as 500(1.01)50(1.01)7(1.01)2/3. The values of
(1.01)50 and (1.01)7 could be found in the interest tables, in par-
ticular in the n = 50 and n = 7 rows of the i = 1% table. There
is no n = 57 row of most interest tables, which is why (1.01)57

would have to be broken up into two parts. The term (1.01)2/3

presents a special problem. Usually only integral values of n are
given in the interest tables, along with common fractional values
such as 1

2 ,
1
4 and 1

12 , but not 2
3 . One could work this out by

observing that (1.01)2/3 = [(1.01)1/12]8, but otherwise log tables
or a power series expansion would be required.
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Example 2.2. Alice borrows 5000 from The Friendly Finance Com-
pany at a rate of interest of 6% per year convertible semiannually. Two
years later she pays the company 3000. Three years after that she pays
the company 2000. How much does she owe seven years after the loan
is taken out?
Solution. We will use a time diagram to aid in our solution:

Figure 2.1

Let X be the amount still owed. In this type of problem, our goal
is to obtain an equation of value which will yield the solution. To do
that, all entries on the time diagram should be brought to the same
point in time so an equation can be found. Any point in time can be
chosen, but the most convenient one in this example is t = 7. The
amount owed will equal the accumulated value at time 7 of the loan,
minus the accumulated value at time 7 of the payments already made.
Since the actual rate of interest is .03 effective per half-year, we have

X = 5000(1.03)14 − 3000(1.03)10 − 2000(1.03)4 = 1280.18.

Example 2.3. Eric deposits 8000 in an account on January 1, 2020.
On January 1, 2022, he deposits an additional 6000 in the account. On
January 1, 2026, he withdraws 12000 from the account. Assuming no
further deposits or withdrawals are made, find the amount in Eric’s
account on January 1, 2029, if i = .03.
Solution. In this example, we see that withdrawals can be viewed as
“negative deposits” in an equation of value.

Figure 2.2

The resulting balance is

X = 8000(1.03)9 + 6000(1.03)7 − 12,000(1.03)3 = 4704.70.
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Example 2.4. Find the net present value of Eric’s deposits and with-
drawals (in Example 2.3) on January 1, 2014.

Solution. In Example 2.3 we saw that the accumulated value of all
deposits and withdrawals on January 1, 2029, is 4704.70. To find the
net present value on January 1, 2014, we multiply by the discount factor
( 1

1.03 )15 and obtain 4704.70( 1
1.03 )15 = 3019.77.

Note that if this question were asked directly (without first doing
Example 2.3) we would obtain the answer by combining the present
values of the individual deposits and withdrawals, obtaining

8000
(

1
1.03

)6

+ 6000
(

1
1.03

)8

− 12000
(

1
1.03

)12

which gives the same answer.

Example 2.5. John borrows 3000 from The Friendly Finance Com-
pany. Two years later he borrows another 4000. Two years after that
he borrows an additional 5000. At what point in time would a single
loan of 12,000 be equivalent if i = .06?

Figure 2.3

Solution. We let t be the number of years after the 3000 loan at which
a single loan of 12,000 would be equivalent, and form the equation of
value at time 0 as 12,000vt = 3000 + 4000v2 + 5000v4, where v = 1

1.06 .
Then vt = 3+4v2+5v4

12 . Taking logs of both sides of this equation we
find t = ln(3+4v2+5v4)−ln 12

ln v = 2.25824.

There is an approximate method of solving problems like Example
2.5, called the method of equated time, but we will not need to examine
it here since there are no difficulties in obtaining an exact solution.

To conclude this section, we give a very simple example where the
rate of interest is the unknown.

Example 2.6. Find the rate of interest such that an amount of money
will double itself over 15 years.

Solution. Let i be the required effective rate of interest. We have
(1 + i)15 = 2, so that i = 21/15 − 1 = .04729.
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2.2 Unknown Rate of Interest
When the rate of interest is the unknown in an equation of value, com-
plications often arise. To illustrate this, consider the following example.

Example 2.7. Joan deposits 2000 in her bank account on January 1,
2020, and then deposits 3000 on January 1, 2023. If there are no other
deposits or withdrawals and the amount of money in the account on
January 1, 2025 is 5600, find the effective rate of interest she earns.

Figure 2.4

Solution. 2000(1 + i)5 + 3000(1 + i)2 = 5600 is the equation of value
on January 1, 2025. Now we have a problem. This equation is a
fifth degree polynomial in i, and there is no exact formula for finding
its solution. Most students will have a subroutine available on their
calculators which will enable them to approximate the answer with a
high degree of accuracy, obtaining i = .035619.

2.3 Time-Weighted Rate of Return
The rate of interest calculated in Section 2.2 is often called the dollar-
weighted rate of investment return. A very different procedure is used
to calculate the time-weighted rate of investment return, and that is
what we will consider here. We remark before starting that in this
section the compound interest assumption is no longer being made.

To calculate the time-weighted rate of return, it is necessary to know
the accumulated value of an investment fund just before each deposit
or withdrawal occurs. Let B0 be the initial balance in a fund, Bn

the final balance, B1, . . . , Bn−1 the intermediate values just preceding
deposits or withdrawals, and W1, . . . , Wn−1 the amount of each deposit
or withdrawal, where Wi > 0 for deposits and Wi < 0 for withdrawals.
Let W0 = 0. Then

it = Bt

Bt−1 + Wt−1
− 1 (2.1)

represents the rate of interest earned in the time period between bal-
ances Bt−1 and Bt. The time-weighted rate of return is then defined
by

i = (1 + i1)(1 + i2) · · · (1 + in) − 1. (2.2)



Interest: Basic Applications 33

Example 2.8. On January 1, 2019, Graham’s stock portfolio is worth
500,000. On April 30, 2019, the value has increased to 520,000. At that
point, Graham adds 60,000 worth of stock to his portfolio. Six months
later, the value has dropped to 560,000, and Graham sells 80,000 worth
of stock. On December 31, 2019, the portfolio is again worth 500,000.
Find the time-weighted rate of return for Graham’s portfolio during
2019.

Solution. The accumulation rate from January 1 to April 30 is given
by the factor 1 + i1 = 520,000

500,000 = 1.04. Immediately after the April 30
stock purchase, the portfolio is worth 580,000. Hence the accumulation
rate from May 1 to October 31 is 1 + i2 = 560,000

580,000 = .96552. Finally,
the accumulation rate in the last two months of the year is 1 + i3 =
500,000
480,000 = 1.04167.
The time-weighted rate of return for the year is found from the interval
accumulation factors as i = (1.04)(.96552)(1.04167) − 1 = .045977.

Note in Example 2.8 that the value of the portfolio decreased dur-
ing the period from May 1 to October 31, so we see that compound
interest is clearly not operating here. Nevertheless, it is still possible to
calculate a dollar-weighted rate of return by considering only deposits
and withdrawals, and ignoring intermediate balances. Setting up the
equation of value by accumulating all quantities to December 31, 2019,
we obtain

500,000(1 + i) + 60,000(1 + i)2/3 − 80,000(1 + i)1/6 = 500,000.

This could be solved by the techniques of Section 2.3, but a popular
alternative approach to this type of problem is to assume simple interest
for periods less than a year. We would then obtain

500,000(1 + i) + 60,000(1 + 2
3

i) − 80,000(1 + 1
6

i) = 500,000.

Since this equation is linear in i, the result i = 60,000
1,580,000 = .03797

is easily obtained. It should always be assumed that this alternative
approach is the appropriate one to use when the interest period in
question is less than or equal to one year.
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EXERCISES
2.1 Equation of Value

2-1. Brenda deposits 7000 in a bank account. Three years later, she
withdraws 5000. Two years after that, she withdraws an ad-
ditional 3000. One year after that, she deposits an additional
4000. Assuming i = .04, and that no other deposits or with-
drawals are made, how much is in Brenda’s account ten years
after the initial deposit is made?

2-2. Eileen borrows 2000 on January 1, 2022. On January 1, 2023,
she borrows an additional 3000. On January 1, 2026, she repays
4000. Assuming i = .043, how much does she owe on January
1, 2030?

2-3. Boswell wishes to borrow a sum of money. In return, he is
prepared to pay as follows: 200 after 1 year, 500 after 2 years,
500 after 3 years and 700 after 4 years. If i = .042, how much
can he borrow?

2-4. Payments of 800, 500 and 700 are made at the ends of years 2, 3
and 6 respectively. Assuming i = .044, find the point at which
a single payment of 2100 would be equivalent.

2-5. A vendor has two offers for a house:
(i) 40,000 now and 40,000 two years hence, or
(ii) 28,000 now, 24,500 in one year, and 27,500 two years hence.

He makes the remark that one offer is “just as good” as the
other. Find the two possible rates of interest which would
make his remark correct.

2-6. (a) The present value of 2 payments of 1000 each, to be made
at the end of n years and n + 4 years, is 1250. If i = .04,
find n.

(b) Repeat part (a) if the payments are made at the end of n
years and 4n years.

2-7. In return for payments of 400 at the end of 3 years and 700 at
the end of 8 years, a woman agrees to pay X at the end of 4
years and 2X at the end of 6 years. Find X if i = .047.

2-8. How long should 1000 be left to accumulate at i = .04 in order
that it may amount to twice the accumulated value of another
1000 deposited at the same time at 3% effective?

2-9. Fund A accumulates at 4.5% effective and Fund B at 4% effec-
tive. At the end of 10 years, the total of the two funds is 52,000.
At the end of 8 years, the amount in Fund B is three times that
in Fund A. How much is in Fund A after 15 years?
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2-10. John pays Henry 500 every March 15 from 2026 to 2030 inclu-
sive. He also pays Henry 300 every June 15 from 2028 to 2031
inclusive. Assuming i(4) = .057, find the value of these payments
on
(a) March 15, 2035;
(b) March 15, 2029;
(c) March 15, 2025.

2.2 Unknown Rate of Interest

2-11. Alex is offered a payment of 500 at time 10. Alternatively, he
is offered payments of 200 at time 0, 100 at time n and 200 at
time 2n. If vn = 0.82 and the present values of the two payment
options are equal, find i.

2-12. A consumer purchasing a refrigerator is offered two payment
plans:
Plan A: 150 down, 200 after 1 year, 250 after 2 years
Plan B: 87 down, 425 after 1 year, 50 after 2 years
Determine the range of interest rates for which Plan A is better
for the consumer.

2-13. Find the effective rate of interest if payments of 300 at the
present, 200 at the end of one year, and 100 at the end of two
years accumulate to 680 at the end of three years.

2-14. Bernie borrows 5000 on January 1, 2020, and another 5000 on
January 1, 2023. He repays 3000 on January 1, 2022, and then
finishes repaying his loans by paying 8,000 on January 1, 2025.
What effective annual rate of interest is Bernie being charged?

2-15. John buys a TV for 600 from Jean. John agrees to pay for the
TV by making a cash down payment of 50, then paying 100
every four months for one year (i.e. three payments of 100), and
finally making a single payment 16 months after the purchase
(i.e. four months after the last payment of 100).
(a) Find the amount of the final payment if John is charged

interest at an effective rate of 5% per year.
(b) Find the effective annual interest rate if John’s final pay-

ment is 270.
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2-16. A trust company pays 3% effective on deposits at the end of
each year. At the end of every four years, a 2% bonus is paid
on the balance at that time. Find the effective rate of interest
earned by an investor if he leaves his money on deposit for
(a) 3 years;
(b) 4 years;
(c) 5 years.

2-17. The present value of a series of payments of 1 at the end of every
2 years forever is equal to 256

33 . Find the effective rate of interest
per year.

2.3 Time-Weighted Rate of Return

2-18. Emily’s trust fund has a value of 100,000 on January 1, 2020.
On April 1, 2020, 6,000 is withdrawn from the fund, and imme-
diately after this withdrawal the fund has a value of 97,000. On
January 1, 2021, the fund’s value is 104,000.
(a) Find the time-weighted rate of investment return for this

fund during 2020.
(b) Find the dollar-weighted annual rate of investment return

for Emily’s fund, assuming simple interest.
(c) Find the rate of return for Emily’s fund using simple inter-

est, and assuming a uniform distribution throughout the
year of all deposits and withdrawals.

2-19. Assume in Question 18 that, in addition to the information
given, there is also a 3000 deposit to the fund on July 1, 2020.
(a) Find the dollar-weighted annual rate of investment return

for the fund, assuming simple interest.
(b) Find the rate of return for Emily’s fund using simple in-

terest and assuming a uniform distribution throughout the
year of all deposits and withdrawals.

(c) Is it possible to calculate the time-weighted rate of return?
If not, why not?

2-20. Jeffrey’s investment account has a value of 10 on January 1,
2016. On July 1, 2016, Jeffrey withdraws X from the account.
Immediately before this withdrawal, the value of the account is
10.5. On December 31, 2016, the value of the account is 1

3 X.
The time-weighted rate of return for this account is 0. Assuming
simple interest, find the dollar-weighted rate of return.
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2-21. Daniel’s investment account has a value of 100 on January 1,
2015. On July 1, 2015, his account has a value of 110, and
immediately thereafter he makes a withdrawal of X. On October
1, 2015, he makes a deposit of 2X — immediately before this
deposit his account has a value of 101. On December 31, 2015,
the value of the account is 110.
Bernard’s investment account also has a value of 100 on Jan-
uary 1, 2015. On July 1, 2015, his account has a value of 110,
and immediately thereafter he makes a withdrawal of X. On
December 31, 2015, Bernard’s account has a value of 101.60.
During 2015, the dollar-weighted rate of return (assuming simple
interest) i for Daniel’s account equals the time-weighted rate of
return for Bernard’s account. Find i.

2-22. Let A be the balance in a fund on January 1, 2019, B the balance
on June 30, 2019, and C the balance on December 31, 2019.
(a) If there are no deposits or withdrawals, show that the

dollar-weighted and time-weighted rates of return for 2019
are both equal to C−A

A .
(b) If there was a single deposit of W immediately after the

June 30 balance was calculated, find expressions for the
dollar-weighted and time-weighted rates of return for 2019.
(Assume simple interest for periods of less than a year.)

(c) If there was a single deposit of W immediately before the
June 30 balance was calculated, find expressions for the
dollar-weighted and time-weighted rates of return for 2019.
(Assume simple interest for periods of less than a year.)

(d) Give a verbal explanation for the fact that the dollar
-weighted rates of return in parts (b) and (c) are equal.

(e) Show that the time-weighted rate of return in part (b) is
larger than the time-weighted rate of return in part (c).
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EXTENDED SPREADSHEET EXERCISES
1. In worksheet 2-1, use the cash flows in Example 2.3, deposit

8000 on 1/1/2020; deposit 6000 on 1/1/2022; withdraw 12,000
on 1/1/2026. Complete the table in EXCEL showing the annual
increments in time and the date in columns B and C, respectively.
Show deposits and withdrawals at the specified time in column D
and write a formula for column E that references the interest rate
in CELL B1 and calculates the account balance at the beginning
of each year from 1/1/2020 to 1/1/2029.

Figure 2.5: Image of worksheet 2-1

a. Assuming no further deposits or withdrawals are made, find
the amount in Eric’s account on 1/1/2029 if i = 0.03 .

b. Assuming no further deposits or withdrawals are made, find
the amount in Eric’s account on 1/1/2029 if i = 0.06 .

c. Assume deposits of 8000 on 1/1/2020 and 1/1/2021; deposits
of 6000 each January 1 from 2022 to 2025; withdrawals of
12,000 each January 1 from 2026 to 2029. Find the amount
in Eric’s account on 1/1/2029 if i = 0.05 .

2. In worksheet 2-2, use the loan amounts in Example 2.5 with
time 0 on 1/1/2010. Borrow 3000 on 1/1/2010; borrow 4000
on 1/1/2012; borrow 5,000 on 1/1/2014. Complete the table in
EXCEL showing the annual increments in time and the date in
Columns B and C, respectively. Show the amounts borrowed at
the specified times in Column D. Create the annual discount fac-
tors in Column E. Create a formula in CELL B2 that references
the interest rate in CELL B1 and calculates the point in time
where a single loan of the total amount of 12,000 borrowed is
equivalent at the specified interest rate.
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Figure 2.6: Image of worksheet 2-2

a. Calculate the equivalent time assuming as in Example 2.5
i = 0.06.

b. Calculate the equivalent time assuming i = 0.18 ; how did
the large change in interest rate affect the equivalent time
for a single loan?

c. Calculate the equivalent time for a single loan using the
method of equated time. This method simply takes the
weighted average of the time the loan amounts are made
by using the loan amounts as the weights:

t̄ =
∑

tkCk

C

Where the loan amount at time tk is Ck and the total loan
amount is C

∑
Ck . Place this formula in CELL E2.

3. In worksheet 2-3, use the cash flow in Example 2.8 with time 0
on 1/1/2019. The initial balance of 500,000 should be input as a
deposit in column D on the date 1/1/2019. The balance before
contributions is given in column E and the deposit (+) or with-
drawal (-) is recorded in column D: balance b/f W/D 525,000 on
5/1/2019; deposit 50,000 on 5/1/2019; balance b/f W/D 560,000
on 11/1/2019; withdraw 100,000 on 11/1/2019; finally, balance
b/f W/D 500,000 on 1/1/2020.

Figure 2.7: Image of worksheet 2-3
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a. When cash flows and balances have been recorded, run the
Exact Dollar-Weighted macro by clicking the macro button.
Compare your results to the results in Example 2.8.

b. Delete the May 1 deposit and balance. What affect did this
have on the time-weighted and dollar weighted return?

c. Now record the previous May 1 deposit and balance on July
1; that is balance b/f W/D 525,000 on 7/1/2019; deposit
50,000 on 7/1/2019 and run the macro. How do your results
compare with part (a), explain?

d. Solve Exercise 2-18 using the spreadsheet. Compare the
simple interest approximations to the dollar weighted return
with exact dollar-weighted return obtained using the macro.
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